Pelvic Osteotomies for Cloacal Exstrophy Jeffrey Gray1; Purushottam Gholve, MD, MBMS, MRCS2 1Sidney Kimmel Medical College, Thomas Jefferson University 2Tufts Medical Center
Cloacal exstrophy is part of a wide-ranging spectrum of rare congenital abnormalities resulting from the same embryological defect. Conditions include bladder exstrophy, epispadias, cloacal exstrophy, omphalocele, and more. Mortality due to complications with cloacal exstrophy was historically significant as it is among the most severe of these abnormalities. However, advancements in reconstructive surgery have improved the survival of patients. Pelvic osteotomy is typically indicated in cloacal exstrophy as it normally presents with widely separated pubic bones that require approximation as part of abdominal wall closure.
Distal humeral fractures are injuries worldwide with operative fixation being the preferred method of treatment. Ulnar neuropathy is one of the possible complications of surgery, and may require an additional surgery to achieve symptom resolution. In this video, Dr. Agarwal-Harding manages a patient who was previously treated with open reduction and internal fixation of a distal humerus fracture, but his recovery was complicated by ulnar neuropathy. He performs an ulnar neurolysis, hardware removal from the medial column of the distal humerus, and anterior transposition of the ulnar nerve with an adipofascial flap. Surgical considerations, including rationale and treatment options, are discussed.
Diagnostic shoulder arthroscopy or arthroscopic shoulder stabilization procedures can be performed with the patient in the beach chair or lateral decubitus (LD) position. Patient positioning may be dictated by surgeon preference or the specific intended procedure; however, LD setup has been found to result in lower rates of recurrent instability in cases of anterior arthroscopic stabilization procedures. The lateral and axial traction provided by the LD setup allows for lower suture anchor placement on the anterior-inferior aspect of the glenoid, as the surgeon has increased visualization and working room within the glenohumeral joint.
Prior to placing the patient in the LD position, meticulous care must be taken to properly position the beanbag device and set up the lateral traction device. Next, a coordinated team approach should be used to roll the patient into the LD position and to ensure that all bony prominences are adequately padded. The shoulder is then placed in 40° of abduction, 20° of forward flexion, with 10–15 pounds of balanced traction. Finally, the shoulder is prepped and draped in the usual sterile fashion and the surgeon is then able to proceed with the necessary arthroscopic procedure.
Optimal portal placement for arthroscopic shoulder stabilization procedures can significantly aid a surgeon’s visualization during the repair as well as suture anchor placement. A percutaneous knotless anchor insertion kit used through a mid-glenoid portal allows the surgeon to access positions on the glenoid rim that are commonly difficult to reach. Moreover, the knotless kit has the ability to save valuable time during arthroscopic stabilization procedures and also eliminates the risk of postoperative knot impingement.
The mid-glenoid portal should be made approximately 1 cm lateral from the joint line of the humeral head and 2–3 cm inferior and 1–2 cm medial from the posterolateral acromial angle. This portal placement avoids injury to the labrum and should be determined after assessing both the thickness of the local soft tissues and the size of the relevant bony architecture. A hole for the knotless anchor should be drilled approximately 1–2 mm onto the face of the glenoid, and the labral tape is then passed a short distance through the eyelet of the knotless fixation device before the construct is inserted into the glenoid. A hemostat is used to hold the tape as it is placed into the drill hole, and a mallet is used to drive the interference portion of the plastic implant to a marked depth. Finally, once the suture anchor is securely affixed, the insertion device is unloaded and pulled out of the portal with 6 counterclockwise turns.
Elbow arthroscopy is a technically demanding procedure but it is very useful to evaluate the entire elbow joint for pathology with minimal surgical exposure and faster recovery than a traditional arthrotomy. The neurovascular structures of the elbow joint are in close proximity to the joint, thus there is a risk of injury to these structures, so care must be taken to fully understand elbow anatomy and to be prepared for aberrations. Elbow arthroscopy can be used diagnostically, as in this video article, or to surgically treat a variety of conditions including ligamentous tears, loose bodies, capsular stiffness, osteochondritis dissecans of the elbow, osteophyte debridement, and lateral epicondylitis. A patient with a previous ulnar nerve transposition is a relative contraindication to elbow arthroscopy, as there is a high risk of injury to the ulnar nerve during portal placement.
As arthroscopic and minimally-invasive procedures have become increasingly more common over the past decade, a versatile understanding of several arthroscopic knot tying techniques is essential for reproducible and reliable repairs. While there are numerous descriptions of unique arthroscopic knots, selection and correct implementation is critical for adequate soft tissue fixation and successful patient outcomes. Specifically, the Roeder knot, a type of locking sliding knot, with 3 alternating half hitches, has been described to provide the loop and knot security among other sliding knot techniques. Therefore, the Roeder knot has emerged as a preferred knot tying technique amongst orthopedic surgeons, especially in the setting of arthroscopic shoulder stabilization procedures. In this case, we describe the basic fundamentals of performing a Roeder knot with 3 alternating half hitches to anchor the labrum to the glenoid in the setting of an arthroscopic Bankart repair.
Left Hip Hemiarthroplasty for Femoral Neck Fracture Michael Akodu, MBBS; Elyse J. Berlinberg, MD; Miles Batty, MD; Michael McTague, MPH; Kiran J. Agarwal-Harding, MD, MPH Beth Israel Deaconess Medical Center
Hip fractures are a major cause of morbidity and mortality, especially among older patients. They also account for a significant portion of healthcare spending and other non-medical costs. These fractures can be classified into various types based on the parts of the femoral head and neck affected, and fixation options are dependent on both patient and injury characteristics. In this video, Dr. Agarwal-Harding takes us through a hip hemiarthroplasty for a left femoral neck fracture, highlighting various guiding principles and surgical considerations.
Femoral fractures typically occur in two major settings: high-energy mechanisms related to trauma and low-energy mechanisms in insufficiency fractures observed in elderly patients with osteopenia. Patients present with pain, swelling, and limited range of motion.
Intramedullary nailing is the definitive surgical treatment for femoral fractures to allow secondary healing of bone. Such a repair is performed here on a patient with a diaphyseal femoral fracture. Surgeon preference was to perform a closed cephalomedullary nailing with the patient supine on a radiolucent fracture table for traction.
Tenosynovitis of the peroneal tendons is a common lower extremity problem that is often mistaken for other ankle pathology. Diagnosis is suggested with thorough history and physical examination and confirmed with radiographic studies when necessary. Patients with less acute or more severe presentation may improve with rest and physical therapy alone. When conservative management fails, surgical intervention is aimed at excising inflamed synovium with debridement and repair of any tears in the peroneal tendons. Recent literature has emphasized the increased use of tendoscopic approaches to peroneal pathology, although most studies to date have been too underpowered to suggest superiority to an open approach. This article presents a case of acute tenosynovitis treated by open surgical debridement and irrigation. Tendoscopy was deferred as the size and nature of this patient’s injury warranted an open repair.
Total Knee Arthroplasty Thomas S. Thornhill, MD; David J. Lee, MD Brigham and Women’s Hospital
Total knee replacement is one of the most common orthopaedic procedures performed in the United States. The most common indication for total knee replacement is osteoarthritis. Clinical signs of knee osteoarthritis include pain with walking, difficulty ranging the knee, knee instability, varus deformity, bony enlargement, extension lag, and flexion contracture. Radiologic evidence for osteoarthritis of the knee includes the presence of osteophytes, joint space narrowing, subchondral sclerosis, subchondral cysts, and malalignment.
Before considering total knee replacement, patients typically undergo a trial of less invasive treatments, including lifestyle modification, pharmacologic therapy, and injections. If these methods fail to produce satisfactory improvement in the patient’s symptoms, one should consider the benefits and risks of total knee replacement in conjunction with their surgeon. Outcomes following total knee replacement are excellent, with patients reporting greatly reduced pain, improved mobility, and improved quality of life. However, patients must be aware that there are serious risks that accompany any surgery, which include infection, pulmonary embolism, deep vein thrombosis, nerve damage, and need for further procedures.